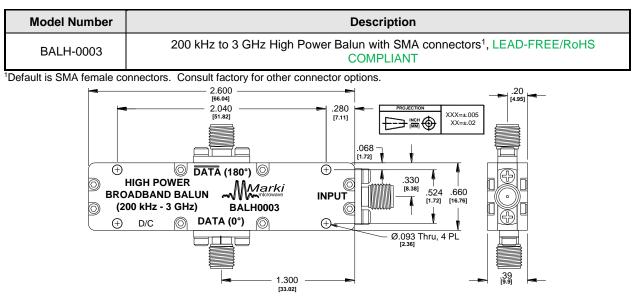


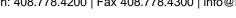
LEAD-FREE / RoHS-COMPLIANT HIGH POWER BALUN (200 kHz to 3 GHz)

Features


- 200 kHz to 3 GHz Balun (Balanced to Unbalanced Transformer)
- Better than 37 dBm 1-dB compression point
- Tuned for Optimal Phase/Amplitude Balance
- Applications: Analog to Digital Converters, Balanced Receivers, Baseband Digital Modulation, Signal Integrity
- BALH-0003.s3p

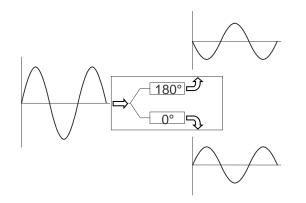
Electrical Specifications - Specifications guaranteed from -55 to +100°C, measured in a 50Ω system.

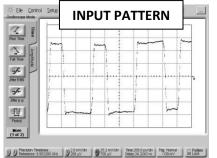
Parameter	Frequency Range	Min	Тур	Max
Insertion Loss as a mode converter (dB)			1.5	2.5
Input 1 dB Compression (dBm) ¹		37		
Nominal Phase Shift (Degrees)			180	
Amplitude Balance (dB)			0.1	0.5
Phase Balance (Degrees)			1	5
Common Mode Rejection (dB)	200 kHz to 3 GHz	35	45	
Isolation (dB)			7	
VSWR (Input)			1.6	
VSWR (Output)			1.6	
Risetime /Falltime (ps) ²			13	
Weight (g)			27	


¹Measured in a well-heat sinked environment.

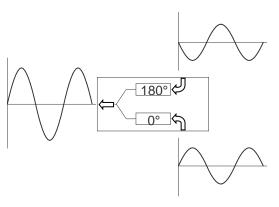
²Specified as 90%/10%. Calculated from $\tau_{balun}^2 = (\tau_{out}^2 - \tau_{in}^2)$

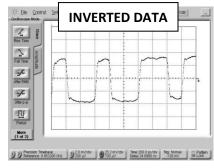
215 Vineyard Court, Morgan Hill, CA 95037 | Ph: 408.778.4200 | Fax 408.778.4300 | info@markimicrowave.com


BALH-0003



Page 2


Block Diagram


Single ended to differential

ciloscope Mode	1	1	DA		•	s = 16	- 1		2
time Amplitude		7			5			~	
-J- Ther RIMS				R	 	- - - - -			7
אר האדםים בני	~	h	4	2	1	in_	~		
Period More 1 of 2)				+					

Differential to single ended

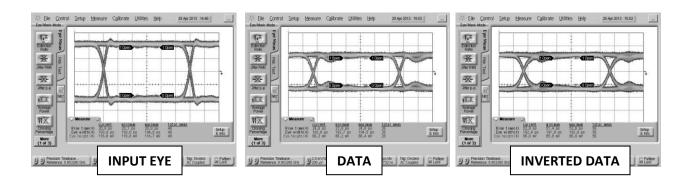


Fig. 1. Oscilloscope measurements of the BALH-0003 with a 5 Gb/s PRBS pattern. Bit pattern is measured with a 2^{7} -1 PRBS input demonstrating extremely good pulse fidelity for both inverted and non-inverted output. Eye diagrams are taken with a 2^{31} -1 PRBS input demonstrating minimal eye distortion/closure afforded by the extremely low frequency operation of the balun (<200 kHz).

BALH-0003

Page 3

Typical Performance Scattering Parameters

Three port scattering parameters measured as three single-ended 50Ω ports showing relationship between any two ports. For example: S21 and S31, often referred to as insertion loss of a balun, is the output response on ports 2 and 3 with an input stimulus on port 1.

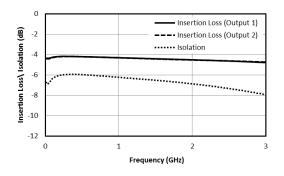


Fig. 2. Common to output port insertion loss and output to output port Isolation.

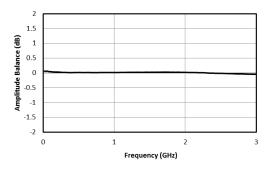


Fig. 4. Amplitude balance between output ports.

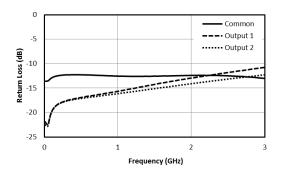


Fig. 3. Return loss for common port and output ports.

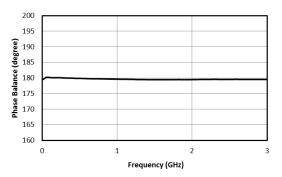


Fig. 5. Phase balance between output ports.

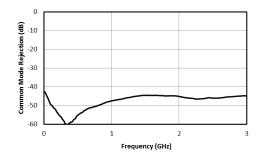
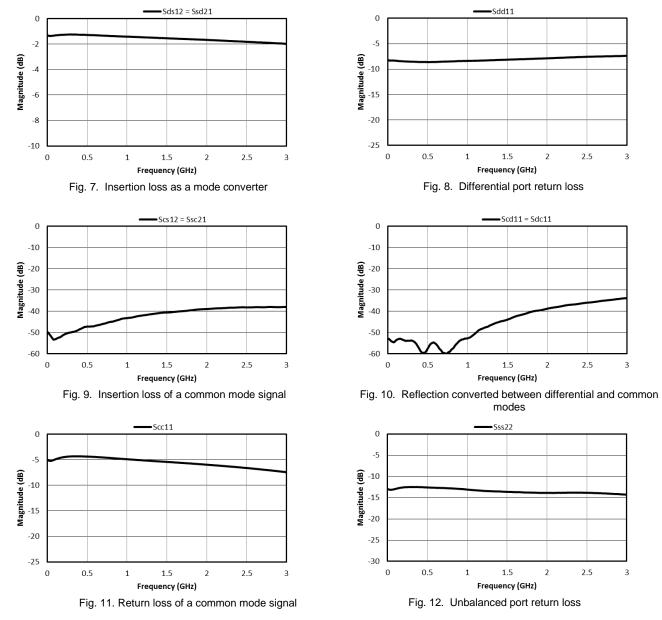


Fig. 6. Common mode rejection.



BALH-0003

Page 4

Mixed Mode Scattering Parameters

Mixed mode scattering parameters are used to characterize differential circuits. For baluns, this means that the 0° and 180° ports become a single 100Ω differential port and the common port remains the same 50Ω common port. The two-port s-parameters of the balun are then characterized based on differential (d), common mode (c), or single-ended (s) signals. For example: Scs12 is the Common output response given a single ended input.

Page 5

DC Interface

Port	Description	DC Interface Schematic	
Common Port / In (Unbalanced)	The common port is DC short to ground.	Common D Port ÷ (Unbalanced)	
Out 1 / 0º Port (Balanced)	The 0° port is DC short to ground.	↓ 0° Port (Balanced)	
Out 2 / 180º Port (Balanced)	The 180° port is DC short to ground.	fuuu- ☐ 180° Port f (Balanced)	

Revision History

Revision code	Revision Date	Comment
-	2014	Datasheet initial Release
A	October 2019	Mixed Mode Scattering Parameters added
В	November 2019	RoHS Compliant assembly
С	July 2020	Specs table update
D	October 2020	Specs table update

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use of or application of any product.